バイオプラスチック – 市場シェア分析、業界動向と統計、成長予測 2025-2030年

Bioplastics - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

バイオプラスチック - 市場シェア分析、業界動向と統計、成長予測 2025-2030年
The Bioplastics Market Report Segments the Industry by Type (Bio-Based Biodegradables and Bio-Based Non-Biodegradables), Feedstock (Sugarcane/Sugar Beet, Corn, Cassava and Potato, and More), Processing Technology (Extrusion, Injection Molding, Blow Molding, and More), Application (Flexible Packaging, Rigid Packaging, Automotive and Assembly Operations, and More), and Geography (Asia-Pacific, North America, Europe, and More).

商品番号 : SMB-89097

出版社Mordor Intelligence
出版年月2025年6月
ページ数190
価格タイプシングルユーザライセンス
価格USD 4,750
種別英文調査報告書

バイオプラスチック市場レポートでは、業界をタイプ別(バイオベースの生分解性物質とバイオベースの非生分解性物質)、原料別(サトウキビ/テンサイ、トウモロコシ、キャッサバ、ジャガイモなど)、加工技術別(押し出し成形、射出成形、ブロー成形など)、用途別(フレキシブル包装、硬質包装、自動車および組立作業など)、地域別(アジア太平洋、北米、ヨーロッパなど)に分類しています。

世界のバイオプラスチック市場規模は2025年に237万トンに達し、2030年には543万トンに拡大すると予測されており、2025年から2030年にかけて年平均成長率(CAGR)17.25%という高い成長率を示しています。政策圧力の高まり、企業の持続可能性目標の強化、そして原料の柔軟性向上が相まって、この急成長を後押ししています。その結果、ブランドオーナーはバイオ由来成分をオプションではなく、必須項目として予算に組み入れるようになりました。注目すべきは、需要の見通しが契約期間を長期化させており、これが大規模な生産能力増強を支えているということです。このように、バイオプラスチック業界は成長初期段階から、より資本集約的な産業段階へと進化しつつあります。

セグメント分析

  • 2024年には、バイオベースの非生分解性プラスチックがバイオプラスチック市場の56%を占めると予測されます。これは主に、既存の溶融ラインに直接接続できるバイオPETおよびバイオPEグレードによるものです。これらの優位性は、性能の既知性に起因しており、ブランドオーナーは設備の改修なしに気候目標を達成できます。しかしながら、市場は生分解性PLAおよびPHAへと明確な転換を見せており、2030年までのCAGRは23.36%と予測されています。認証機関が堆肥化基準を明確にするにつれ、バイヤーは樹脂の種類だけでなく、使用後の状況によって用途を細分化する傾向が強まっています。
  • 生分解性グレードの需要は、食品サービス製品において最も急速に伸びています。食品サービス製品では、義務付けられた有機廃棄物処理の流れにおいて堆肥化可能な製品が好まれています。実用的な観点から見ると、材料選定において、機械的特性だけでなく、地域の廃棄物インフラも考慮されるようになっています。この動向は、地域政策の違いが将来の樹脂配合に影響を与えることを示唆しており、ある都市では堆肥化を優先し、他の都市ではリサイクルに注力するでしょう。
  • サトウキビとテンサイは2024年までに全原料の41%を供給し、バイオエタノール、そしてバイオエチレンまたはPTAへの確実な変換ルートを提供します。しかし、セルロース系廃棄物と木材廃棄物の投入量は年平均成長率24.30%で増加しており、オリジンマテリアルズが林業残渣から中間体を生産する商業生産ラインは、非食用バイオマスが大規模に事業化可能であることを強調しています。
  • 関係者は、複数の原料を柔軟に利用できることは供給ショックへの対応にもつながると指摘しています。砂糖の収量が低迷した場合、バガスと農業残渣の両方の原料を保有する製糖工場は、迅速に原料供給ルートを変更することが可能となります。こうした選択肢は、新規工場の設計における投資基準となりつつあり、より回復力のある供給エコシステムの構築を示唆しています。
  • バイオプラスチック市場レポートでは、業界をタイプ別(バイオベースの生分解性物質とバイオベースの非生分解性物質)、原料別(サトウキビ/テンサイ、トウモロコシ、キャッサバ、ジャガイモなど)、加工技術別(押し出し成形、射出成形、ブロー成形など)、用途別(フレキシブル包装、硬質包装、自動車および組立作業など)、地域別(アジア太平洋、北米、ヨーロッパなど)に分類しています。

Bioplastics Market Analysis

The global bioplastics market size reached 2.37 million tons in 2025 and is forecast to expand to 5.43 million tons by 2030, reflecting a compelling 17.25% CAGR across 2025-2030. Rising policy pressure, stronger corporate sustainability targets, and improving feedstock flexibility collectively propel this steep trajectory, and one outcome is that brand‐owners are now budgeting for bio-based content as a line-item rather than an optional premium. A notable implication is that demand visibility is lengthening contract horizons, which underpins larger-scale capacity additions. Thus, the bioplastics industry is evolving from early-stage growth toward a more capital-intensive, industrial phase.

バイオプラスチック - 市場シェア分析、業界動向と統計、成長予測 2025-2030年
Bioplastics – Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 – 2030)

Global Bioplastics Market Trends and Insights

Mandate for Single-Use Plastic Bans Catalyzing Bio-Based Adoption

The PPWR takes effect in February 2025 and requires all packaging placed on the EU market to be recyclable by 2028, explicitly allowing bio-based plastics when mechanical recycling is impracticable. Producers view the rule as a demand guarantee for compostable coffee capsules, thin films, and barrier coatings where recycling economics are weak, and one immediate response has been fast-tracked certification programmes for food-contact PLA. Forward contracting for compliant material indicates that legislators are accelerating commercial timelines, and procurement teams now see regulatory alignment as a cost-avoidance strategy rather than a marketing add-on.

Growing Demand for Bioplastics in Packaging

Flexible packaging already accounts for one quarter of the overall bioplastics market size in 2024 and is projected to grow at 24.38% CAGR to 2030, making it both the largest and fastest-growing application. Brand owners cite shelf-life parity and improved sealability as decisive factors, and converters are redesigning laminates to remove aluminium layers in favour of bio-barrier coatings. This rapid uptake suggests that technical barriers once thought fundamental are now being treated as routine engineering challenges.

Availability of Cheaper Alternatives

Price-sensitive buyers in developing regions still opt for petro-plastics, yet rising landfill levies and emerging carbon taxes are eroding the headline price gap. Distributors observe that when extended producer responsibility fees are included, the total landed cost difference narrows further, especially for lightweight packaging. Consequently, economic tipping points vary by jurisdiction, indicating that cost parity is as much a policy question as a technology challenge.

Other drivers and restraints analyzed in the detailed report include:

  • Corporate Net-Zero Targets Accelerating Procurement
  • Environmental Factors Encouraging a Paradigm Shift
  • Performance Gap of Bio-PET vs. Petro-PET in High-Heat Applications

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Bio-based non-biodegradable plastics hold 56% bioplastics market share in 2024, largely due to Bio-PET and Bio-PE grades that fit straight into existing melt lines. Their dominance stems from performance familiarity, allowing brand owners to meet climate targets without re-engineering equipment. Nonetheless, the market shows a clear pivot toward biodegradable PLA and PHA, which log a forecast of 23.36% CAGR through 2030. As certification bodies clarify compostability standards, buyers increasingly segment applications by end-of-life outcome rather than by resin family alone.

Demand for biodegradable grades is moving fastest in food-service items, where mandated organic-waste streams favour compostable products. A practical takeaway is that material selection now factors in local waste infrastructure as much as mechanical properties. This dynamic suggests that regional policy divergences will shape future resin mixes, with certain cities prioritising composting and others doubling down on recycling.

Sugarcane and sugar beet supply 41% of total feedstock in 2024, offering reliable conversion routes to bioethanol and thereafter to bio-ethylene or PTA. Yet, cellulosic and wood waste inputs are climbing at 24.30% CAGR, and Origin Materials’ commercial line converting forest-sector residue to intermediates underscores that non-food biomass is viable at scale.

Stakeholders note that multi-feedstock flexibility also hedges against supply shocks; if sugar yields falter, mills maintaining both bagasse and agricultural residue routes can redirect quickly. Such optionality is becoming an investment criterion in new plant design, pointing to a more resilient supply ecosystem.

The Bioplastics Market Report Segments the Industry by Type (Bio-Based Biodegradables and Bio-Based Non-Biodegradables), Feedstock (Sugarcane/Sugar Beet, Corn, Cassava and Potato, and More), Processing Technology (Extrusion, Injection Molding, Blow Molding, and More), Application (Flexible Packaging, Rigid Packaging, Automotive and Assembly Operations, and More), and Geography (Asia-Pacific, North America, Europe, and More).

Geography Analysis

Asia accounted for 48% of the global bioplastics market size in 2024 and is on track for a 22.47% CAGR, effectively solidifying its leadership position each year. Thailand’s new bio-ethylene complex, backed by Braskem and SCG Chemicals, nearly doubles regional bio-PE output and provides local converters with a stable domestic source. Financial incentives from several Asian governments accelerate plant approvals, and abundant agricultural residue streams reduce feedstock risk. These advantages encourage vertically integrated clusters that cut logistics costs and tighten supply chains.

Europe differentiates itself through stringent circular-economy regulations. The PPWR’s recyclability mandate and national plastic taxes create a price signal favoring compostable and mechanically recyclable biopolymers. Companies are responding with innovations such as Futerro’s RENEW PLA, which is fully recyclable through the LOOPLA process, offering an end-of-life route that aligns with EU objectives.

North America lags in absolute volume but shows momentum in advanced bio-polyesters and PHAs. Corporate sustainability goals, rather than national regulation, drive adoption, and the prevalence of private-sector initiatives yields a diverse portfolio of pilot plants. The

List of Companies Covered in this Report:

  • Arkema
  • BASF
  • BIOTEC Biologische Naturverpackungen GmbH & Co. KG.
  • Braskem
  • Danimer Scientific
  • Eni S.p.A. (Novamont)
  • FUTERRO
  • Indorama Ventures Public Company Limited
  • Minima
  • NatureWorks LLC
  • Rodenburg Biopolymers
  • TotalEnergies (Total Corbion)
  • Trinseo

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

Table of Contents

1 Introduction

1.1 Study Assumptions and Market Definition

1.2 Scope of the Study

2 Research Methodology

3 Executive Summary

4 Market Landscape

4.1 Market Overview

4.2 Market Drivers

4.2.1 Mandate for Single-Use Plastic Bans Catalyzing Bio-Based Adoption in Europe and Asia

4.2.2 Growing Demand for Bioplastics in Packaging

4.2.3 Corporate Net-Zero Targets Accelerating Procurement of Low-Carbon Biopolymers in North America

4.2.4 Environmental Factors Encouraging a Paradigm Shift

4.2.5 Government Procurement Policies Favoring Bio-Content in Public-Sector Packaging In EU and India

4.3 Market Restraints

4.3.1 Availability of Cheaper Alternatives

4.3.2 Performance Gap of Bio-PET VS Petro-PET in High-Heat Applications

4.3.3 Volatile Sugarcane Prices Impacting Cost Stability

4.4 Value Chain Analysis

4.5 Patent Analysis

4.6 Porter’s Five Forces

4.6.1 Bargaining Power of Suppliers

4.6.2 Bargaining Power of Buyers

4.6.3 Threat of New Entrants

4.6.4 Threat of Substitutes

4.6.5 Degree of Competition

5 Market Size and Growth Forecasts( Volume)

5.1 By Type

5.1.1 Bio-based Biodegradables

5.1.1.1 Starch-based

5.1.1.2 Polylactic Acid (PLA)

5.1.1.3 Polyhydroxyalkanoates (PHA)

5.1.1.4 Polyesters (PBS, PBAT, PCL)

5.1.1.5 Other Bio-based Biodegradables

5.1.2 Bio-based Non-biodegradables

5.1.2.1 Bio Polyethylene Terephthalate (PET)

5.1.2.2 Bio Polyethylene

5.1.2.3 Bio Polyamides

5.1.2.4 Bio Polytrimethylene Terephthalate

5.1.2.5 Other Bio-based Non-biodegradables

5.2 By Feedstock

5.2.1 Sugarcane / Sugar Beet

5.2.2 Corn

5.2.3 Cassava and Potato

5.2.4 Cellulosic and Wood Waste

5.2.5 Others (Algae and Microbial Oil)

5.3 By Processing Technology

5.3.1 Extrusion

5.3.2 Injection Molding

5.3.3 Blow Molding

5.3.4 3D Printing

5.3.5 Others (Thermoforming, etc.)

5.4 By Application

5.4.1 Flexible Packaging

5.4.2 Rigid Packaging

5.4.3 Automotive and Assembly Operations

5.4.4 Agriculture and Horticulture

5.4.5 Construction

5.4.6 Textiles

5.4.7 Electrical and Electronics

5.4.8 Other Applications

5.5 By Geography

5.5.1 Asia-Pacific

5.5.1.1 China

5.5.1.2 India

5.5.1.3 Japan

5.5.1.4 South Korea

5.5.1.5 Indonesia

5.5.1.6 Thailand

5.5.1.7 Rest of Asia-Pacific

5.5.2 North America

5.5.2.1 United States

5.5.2.2 Canada

5.5.2.3 Mexico

5.5.3 Europe

5.5.3.1 Germany

5.5.3.2 United Kingdom

5.5.3.3 Italy

5.5.3.4 France

5.5.3.5 Netherlands

5.5.3.6 Spain

5.5.3.7 Rest of Europe

5.5.4 South America

5.5.4.1 Brazil

5.5.4.2 Argentina

5.5.4.3 Rest of South America

5.5.5 Middle-East and Africa

5.5.5.1 Saudi Arabia

5.5.5.2 United Arab Emirates

5.5.5.3 Turkey

5.5.5.4 South Africa

5.5.5.5 Egypt

5.5.5.6 Kenya

5.5.5.7 Rest of Middle-East and Africa

6 Competitive Landscape

6.1 Market Concentration

6.2 Strategic Moves

6.3 Market Share Analysis

6.4 Company Profiles {(includes Global level Overview, Market level overview, Core Segments, Financials as available, Strategic Information, Market Rank / Share for key companies, Products and Services, and Recent Developments)}

6.4.1 Arkema

6.4.2 BASF

6.4.3 BIOTEC Biologische Naturverpackungen GmbH & Co. KG.

6.4.4 Braskem

6.4.5 Danimer Scientific

6.4.6 Eni S.p.A. (Novamont)

6.4.7 FUTERRO

6.4.8 Indorama Ventures Public Company Limited

6.4.9 Minima

6.4.10 NatureWorks LLC

6.4.11 Rodenburg Biopolymers

6.4.12 TotalEnergies (Total Corbion)

6.4.13 Trinseo

7 Market Opportunities and Future Outlook

7.1 Integration of Bioplastics Into Advanced Mechanical-Recycling Streams

7.2 Expansion Potential in 3D-Printing Filaments

7.3 White-space and Unmet-need Assessment