AI Disruption: A Global Overview
| 出版社 | BCC Research |
| 出版年月 | 2025年8月 |
| ページ数 | 85 |
| 価格タイプ | シングルユーザライセンス |
| 価格 | USD 4,650 |
| 種別 | 英文調査報告書 |
Report Scope
This report comprehensively analyzes how AI disrupts industries, organizations and societies across technological, operational, customer-facing and competitive dimensions. The study draws on global benchmarks, real-time applications and deep research from academic, corporate and policy institutions to define the evolving AI landscape. The report examines several vectors, including platform shifts involving AI-native architectures, generative AI, automation systems, robotics and data infrastructure. It examines the reengineering of internal workflows, supply chains, logistics and decision-making through intelligent automation and ML-based optimization. It also examines AI in user experience, personalization engines, predictive services, voice interfaces and AI agents.
The report focuses on the most AI-affected sectors globally, with real-world use cases and trend analysis in domains such as healthcare, finance and banking, manufacturing and supply chain, retail and e-commerce, education and edtech, transportation and logistics, media and entertainment, and other emerging sectors. The study also presents a regional landscape to identify AI leaders and late adopters. It maps the regional maturity, investment flows, talent ecosystems and policy environments in North America, Asia-Pacific, Europe and the Rest of the World (RoW).
The base year for the market study is 2024, with estimates and forecasts for 2025 through 2030. Market estimates are valued in U.S. dollars (millions). The study covers current market and technological conditions involving real-time case studies, implementation data and short-term trends. This is followed by forecast (2025 through 2030), including AI maturity roadmaps, workforce evolution, disruption inflection points, feedback from key industry players, investment trends and regulatory timelines.
Report Includes
– An overview of the types of disruptions influenced by AI, e.g., technological, operational, customer-facing, or shifts in the competitive landscape
– Information on operational disruptions, which focuses on how AI is changing core operations, workflows and supply chains
– Discussion of the transformation or replacement of job functions, as well as shifts in the skill demand across various industries
– Competitive disruption and market entry, i.e., lowering of market entry barriers due to AI
– Analysis of disruption in customer experience and discussion of how AI is transforming user experience, personalization and customer support
– Coverage of case studies of companies that have undergone major disruption due to AI adoption
– Expert quotes on AI disruption from primary respondents
Table of Contents
Table of Contents
Chapter 1 Executive Summary
Study Goals and Objectives
Reasons for Doing This Study
Scope of Report
Chapter 2 Market Overview
AI Disruption Overview
Characteristics of AI Disruption
Evolution of AI
Historical Milestones
Current State of AI (2025)
AI Platform Shift
Foundation Models
Generative AI Revolution
AI Beyond 2025
Chapter 3 Type of Disruptions Influenced by AI
Overview
Technological Disruption
Real-time Use Cases
Operational Disruption
Real-time Use Cases
Customer-Facing Disruption
Real-time Use Cases
Competitive Landscape Shift
Real-time Use Cases
Chapter 4 Technological Disruptions
Overview
Key Trends in Technological Disruption
Components of AI-Driven Technological Disruption
Advanced ML and Deep Learning
Generative AI
Automation and Robotics
Predictive Analytics
Natural Language Processing (NLP)
Edge and Cloud AI
Rise of AI Marketplaces
AI as a General-Purpose Technology
Innovations in ML, NLP and Computer Vision
AI’s Transformative Impact on Product Development and R&D
Chapter 5 Operational Disruptions
Overview
Key Trends in AI-Driven Operational Disruption
Components of AI-Driven Operational Disruption
Hyperautomation and Intelligent Workflow Orchestration
Predictive and Prescriptive Analytics
AI-Augmented Human Workforce
Digital Twins and Real-Time Monitoring
Dynamic Resource Allocation and Optimization
Intelligent Decision Support System
Process Automation
Predictive Maintenance
AI in Supply Chain and Logistics
Types of Data in Supply Chain Management
Challenges of AI in Supply Chain Management
AI in ESG and Sustainable Operations Reporting
Chapter 6 Customer-Facing Disruptions
Overview
Key Trends in AI-Driven Customer-Facing Disruptions
Components of AI-Driven Customer-Facing Disruption
Conversational AI and Virtual Assistants
Visual Search and Recommendation Systems
Predictive Customer Intelligence
Emotion and Sentiment Recognition
AI-Driven Personalization
Experience Design Powered by Behavioral AI
Immersive AI in AR/VR Commerce
AI Impact on Digital Accessibility
Chapter 7 Competitive Disruptions
Overview
Major Challenges with AI-driven Competitive Disruption
Key Trends in AI-Driven Competitive Disruptions
Components of AI-Driven Competitive Disruption
AI-Native Business Models
Proprietary Data and Network Effects
Automation-Enabled Cost Leadership
Platform Play and Ecosystem Monetization
Role of Open-Source and AI Platforms
AI Tools Lowering Barriers to Entry
Startups vs. Incumbents
AI as a Strategic Asset in M&A and Valuation
Democratization of Innovation
Market Shifts and Incumbent Challenges
Chapter 8 AI Impact on Major Industries
Overview
AI Impact on Major Industries
Healthcare
Finance
Manufacturing and Supply Chain
Retail and E-commerce
Education and Edtech
Transportation and Logistics
Media and Entertainment
Others (Government Sectors, Infrastructure, Legal and Compliance)
Chapter 9 AI Disruption in Major Regions
Overview
North America
Europe
Asia-Pacific
Rest of the World
Chapter 10 Case Studies of Disruptions
Case Studies of Disruptions
Healthcare
Google DeepMind’s AlphaFold
Deep 6 AI Accelerating Clinical Trials
AstraZeneca Revolutionizing Oncology with AI
Roche Innovating Drug Discovery with AI
Novartis Using AI in Drug Formulation
Manufacturing and Supply Chain
AI Transforms Amazon’s Supply Chain
Unilever Optimizing Supply Chain with AI
Siemens Advancing Industrial Automation with AI
General Electric Using AI to Optimize Energy Production
Transportation and Logistics
Tesla’s Autonomous Vehicles
Airbus Using AI for Aircraft Maintenance
Ford Enhancing Driving Safety with AI
Retail and E-commerce
Zara Driving Retail with AI
Stitch Fix Transforming the Future of Fashion Retail
Salesforce Utilizing AI to Enhance Customer Relationship Management
Procter & Gamble Incorporating AI in Consumer Goods Production
Media and Entertainment
Netflix Personalizing Entertainment with AI
Baidu Facilitating Voice Recognition
NVIDIA Utilizing AI to Enhance Gaming Graphics
Finance and Banking
American Express Using AI to Secure Transactions
Other Sectors
Blue River Technology Utilizing AI in Agriculture
The Weather Company Utilizing AI to Predict Weather Patterns
Cisco Using AI to Secure Networks
Shell Using AI to Optimize Energy Resources
Ukraine’s AI-Powered Drone Strike Campaign
Chapter 11 Expert Opinions
Quotes from Primary Respondents and Domain Experts
How AI is Disrupting the Manufacturing and Logistics Industry
How AI is Disrupting the Education Industry
How AI is Disrupting the Productivity Software Industry
How AI is Disrupting the Publishing Industry
Interview Highlights
Manufacturing and logistics
Education and Edtech
Productivity
Publishing
Emerging Narratives in the AI Disruption Debate
From Displacement to Augmentation
AI as a General-Purpose Technology
Ethical AI
Global AI Race
Democratization vs. Centralization
Chapter 12 Future of AI Disruption
Future of AI Disruption
Forecasts and Predictions (2025-2030)
Innovations
Agentic AI
Artificial General Intelligence (AGI)
Neuromorphic AI
Chapter 13 Appendix
Methodology
References
Abbreviations
List of Tables
List of Tables
Table 1 : Comparison of AI Disruption with Non-AI Technology Disruption
Table 2 : Snapshot of AI Use and their Company/Agency Name, 2025
Table 3 : Scenario Planning Matrix, 2030
Table 4 : AI Disruption vs. AI Transformation vs. AI Optimization
Table 5 : Industry Impact
Table 6 : SWOT Analysis: Startups vs. Incumbents
Table 7 : Newly Funded AI Companies, by Country/Region, 2023
Table 8 : Global Market for AI, by Region, Through 2030
Table 9 : Abbreviations Used in This Report
List of Figures
List of Figures
Figure 1 : AI Use Cases in Operations Management
Figure 2 : Notable ML Models, by Country/Region, 2023
Figure 3 : Relevance of Selected Responsible AI Risks for Organizations, by Region, 2025
Figure 4 : Global Market Shares of AI, by Region, 2024
BCC Research(BCCリサーチ)はライフサイエンス、センサ、マテリアル、環境、商取引関連市場を中心とした広範な市場調査レポートを出版する米国の調査会社です。
ライセンス別価格表
2024年11月より価格構成が大幅に変更になりました。最新の価格についてはお問合せください。
調査会社の事情により予告なしに変更されることがございます。最新の状況およびその他のパターンについてはお問い合わせください。
新価格表
ライセンスタイプ1
| シングルユーザ | 2-5ユーザ | サイト | エンタープライズ |
| USD 4,650 | USD 5,580 | USD 6,696 | USD 8,035 |
ライセンスタイプ2
| シングルユーザ | 2-5ユーザ | サイト | エンタープライズ |
| USD 2,950 | USD 3,540 | USD 4,248 | USD 5,098 |
ライセンスタイプ3
| シングルユーザ | 2-5ユーザ | サイト | エンタープライズ |
| USD 2,500 | USD 3,000 | USD 3,600 | USD 4,320 |
旧価格表
旧ライセンスタイプ1
| シングルユーザ | 2-5ユーザ | サイト | エンタープライズ |
| USD 5,500 | USD 6,600 | USD7.920 | USD 9,504 |
旧ライセンスタイプ2
| シングルユーザ | 2-5ユーザ | サイト | エンタープライズ |
| USD 3,500 | USD 4,200 | USD 5,040 | USD 6,048 |
ご購入に関するご案内
価格・納期について
- 価格
- ウェブサイトに記載の外貨(定価)を見積日のTTSレートで換算後消費税を加えた金額が弊社からの請求金額になります。見積金額はレート変動に関係なく見積書発行日より2週間有効です。手数料(ハンドリングチャージ)無料。
- ライセンス
- シングルユーザライセンス
- 1名のみレポートファイルのご利用が可能です。
- 2-5ライセンス
- 同一企業内5名までレポートファイルのご利用が可能です。
- サイトライセンス
- 同一企業同住所内でレポートファイルのご利用が可能です。
- エンタープライズライセンス
- 同一企業内人数無制限でレポートファイルのご利用が可能です。
- シングルユーザライセンス
- 納品形態
- Eメール
- 納期
- ご注文後3営業日以内
ご注文方法
- レポートページ内のお問い合わせフォームより見積もりをご請求ください。確認次第見積書と発注書をお送りいたします。既に弊社の見積書をお持ちの場合にはEメールまたはFAXでご注文ください。
その他
- 商品の性質上、ご注文後のキャンセル/返品/交換はできません。ご了承ください。
BCC Researchが出版する調査レポートのサンプルページのご依頼、見積り、ご質問など購入前のご相談はいつでもお気軽にご連絡ください。
最新調査レポート
- 食品小売業およびEコマースにおけるAIの世界市場 2025-11-14
- 免疫療法薬の世界市場 2025-11-12
- 農業におけるAIの世界市場 2025-11-10
- 世界の電気アーク炉市場 2025-11-07
- 固体酸化物形燃料電池の技術と世界市場 2025-11-07