CX用途での人工知能活用

出版:ダッシュネットワーク(Dash Network) 出版年月:2021年11月

CX用途での人工知能活用:CXプラットフォームおよび用途でのAI採用に向けたケーススタディ、市場促進要因、成長阻害要因、成功事例

Artificial Intelligence for CX Applications
Case Studies, Market Drivers, Market Barriers, and Best Practices for the Adoption of AI Within CX Platforms and Applications

ページ数 29
図表数 7
価格
ベーシックユーザライセンス(1-5ユーザ) USD3,500
エンタープライズライセンス USD5,250
種別 英文調査報告書

このレポートへお問合せ  レポート目次

ダッシュネットワーク(Dash Network)「CX用途での人工知能活用:CXプラットフォームおよび用途でのAI採用に向けたケーススタディ、市場促進要因、成長阻害要因、成功事例 – Artificial Intelligence for CX Applications: Case Studies, Market Drivers, Market Barriers, and Best Practices for the Adoption of AI Within CX Platforms and Applications」はカスタマーエクスペリエンス(CX/顧客体験)プラットフォーム、用途、プログラムの採用と利用を取り巻く市場成長促進要因と阻害要因、人工知能(AI)の一般的なユースケースのカテゴリ、CXの改善するためのAI利用に関する詳述を含む代表的な事例研究などに着目しています。

主な掲載内容

  1. エグゼクティブサマリー
  2. 市場概観
  3. ケーススタディ
  4. 成功事例

Artificial intelligence (AI) has become nearly ubiquitous across a wide range of industries and use cases, and within the CX discipline, AI functionality is no different; AI is increasingly being integrated or incorporated into CX platforms and applications. AI functionality is being integrated or incorporated into CX platforms and applications, with low- or no-code interfaces that allow CX, marketing, and sales professionals with little data science or computer coding experience to manipulate data and tune algorithms to serve several different functions. Many organizations have already seen the benefit of deploying AI across customer-facing functions and in back-office systems to support applications including the generation of intelligent insights, predictions, customer preferences, next-best-action recommendations, and the support of higher levels of automation.

AI heavily relies on the capture, organization, and activation of customer data, processing the data and capturing various aspects of interactions with customers. As more data is captured and processed, more complex algorithms or combinations of algorithms can be deployed, resulting in greater value and a greater return on investment (ROI).

This Dash Research report focuses on the market drivers and barriers surrounding the adoption and use of AI in CX platforms, applications, and programs, the general use case categories for AI, and several representative case studies detailing the use of AI to improve CX. The report also details current AI regulations, which generally focus on the proper collection and use of personal information.

Key Questions Addressed:

  • How are companies using AI to support their CX initiatives?
  • What are the key drivers of AI adoption for CX applications and platforms?
  • What are the key functions within CX that AI can support or enable?
  • What barriers exist that may hinder the adoption of AI within CX platforms or applications?
  • What are the key underlying technologies used in AI?
  • What are the relevant regulatory issues of which CX professionals using AI should be aware?
  • What are some examples of AI being utilized in the real world?

Who Needs This Report?

  • CX practitioners
  • Marketing/sales managers
  • C-suite and strategy directors
  • IT integration specialists
  • Logistics specialists
  • Contact center managers
  • Investor community

Case Studies

  • Netflix
  • N26
  • Kiwi.com
  • UPS
  • Cresta

Key Figures

  • AI Maturity and Data Integration Depth
  • Predictive Modeling Using Machine Learning
  • A Typical Online/Offline Customer Journey Map
  • Data Observability
  • Netflix Recommendation Engine
  • N26 AI Assistant
  • UPS ORION System End-Use Markets
  • Retailers
  • Consumer goods firms
  • Online/offline retailers
  • B2B and services firms
  • Media and entertainment companies
  • Transportation companies
  • Hospitality companies
  • Telecommunications companies
  • Healthcare companies
  • First/Third-party marketers
  • Data privacy specialists
  • Software vendors
  • Shipping companies
  • Logistics companies

Technologies

  • Artificial Intelligence (AI)
  • Machine Learning (ML)
  • Deep Learning (DL)
  • Natural Language Processing (NLP)
  • Computer Vision (CV)

Geographies

  • North America
  • Europe
  • Asia Pacific
  • Latin America
  • Middle East and Africa

目次

Table of Contents

  1. Executive Summary
    1. Introduction
    2. Market drivers
    3. Market barriers
    4. Dash Research insights
  2. Market Overview
    1. Introduction
      1. Use case categories
        1. Intelligent insights
        2. Predictions
        3. Preferences
        4. Recommendations
        5. Automation
    2. Commercial integration of AI
    3. Market drivers
      1. Increasing demand for customer-facing automation and assistants
      2. Higher demand for backend automation and intelligent analysis
      3. Growing appetite for data-led insights and customer journeys
      4. More value seen with deeper customer engagement
    4. Market barriers
      1. Limited scope or quality of data
      2. Lack of alignment between CX challenges and AI solutions
      3. Limited data governance policies and privacy concerns
      4. Algorithm management issues
    5. Regulatory issues
      1. AI algorithm regulation
      2. State data privacy laws
      3. State data security laws
      4. State breach notification laws
  3. Case Studies
    1. Customer-facing case studies
      1. Netflix Recommendation Engine
      2. N26: Using AI to power a virtual assistant
      3. Kiwi.com: AI assistants for travel services
    2. Back-office case studies
      1. UPS: Using AI to improve logistics
      2. Cresta: AI-driven coaching
  4. Best Practices
    1. Develop a data-centric culture
    2. Eliminate data silos
    3. Use AI to support and augment human efforts
  5. Acronym and Abbreviation List
  6. Table of Contents
  7. Table of Figures
  8. Appendix
    1. Scope of study
    2. Sources and methodology
    3. Copyright notice

List of Figures

  • AI Maturity and Data Integration Depth
  • Predictive Modeling Using Machine Learning
  • A Typical Online/Offline Customer Journey Map
  • Data Observability
  • Netflix Recommendation Engine
  • N26 AI Assistant
  • UPS ORION System

お問合せフォーム

    ※レポートのタイトルは自動で入ります。

    お名前(必須)

    会社名(必須)

    部署名

    メールアドレス(必須)

    電話番号

    当ウェブサイトを知った経由を教えてください。

    お問合せ区分(必須)

    お問合せ内容(必須)

    株式会社SEMABIZ・ChosaReport.com プライバシーポリシー

    Eメールでのお問合せもお受けしております。
    下記アドレスへ“(at)”を“@”に変えてお送りください。通常1営業日以内にご返信いたします。
    crinquiry(at)chosareport.com